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Abstract 

Prostate cancer presents a major global health concern despite advancements in prostate-specific antigen testing and 

treatment resulting in reduced mortality rates. However, metastatic and non-metastatic castrate-resistant prostate 

cancer (CRPC) persists as a significant challenge. Emerging research suggests targeting the non-ligand-binding (non-

LBD) site such as the binding function 3 region (BF3) of the androgen receptor 1 (AR1) protein, as a promising 

approach to combat progression of the disease. This underscores the necessity for developing novel AR signaling 

inhibitors. This study aimed to identify a novel small molecule inhibitor for non-metastatic CRPC therapy by targeting 

the BF-3 region for promising improved patient outcomes. In-silico pharmacophore modeling, QSAR analysis, and 

molecular docking were conducted followed by molecular dynamics simulations and binding free energy calculations. 

The results of this study highlighted key pharmacophoric features for effective AR1 inhibition, that may serve as a 

guide for the design of novel inhibitors. ZINC92180466 emerged as a promising AR1 BF3-binding compound, while 

energy decomposition analysis elucidated crucial ligand-receptor interactions. Overall, the study underscores the 

potential of AR1-targeted therapies in combating prostate cancer, particularly at non-LBD sites such as the BF3 region, 

thereby offering avenues for therapeutic advancement and improved prostate cancer patient prognosis. 
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1. Introduction 

Prostate cancer (PCa), the most diagnosed cancer in men, remains a significant global health burden due to a rise in 

prostate cancer incidence [1]. However, there is a decline in mortality rate in developed nations due to early detection, 

increased prostate-specific antigen (PSA) testing and improved treatment and [2,3]. The primary treatment for 

metastatic hormone-sensitive prostate cancer involves androgen deprivation therapy (ADT) to suppress testosterone 

levels. However, a considerable portion of cases usually progress to metastatic castrate-resistant prostate cancer 

(mCRPC) otherwise known as the terminal phase, thereby highlighting the limitations of traditional hormonal 

therapies [4-6]. The androgen receptor (AR) plays a critical role in male reproductive functions and is intricately 

linked to the development and progression of PCa, thereby explaining its critical role in current PCa therapeutic 

strategies [7,8]. AR signaling represents a critical pathway in prostate cancer, which is evidenced by the initial reliance 

on androgen-deprivation therapy for patient treatment [9,10], while prostate cancer patients with diminishing 

responsiveness to such therapy are classified as castration-resistant prostate cancer (CRPC) patients, with continued 

reliance of the condition on AR signaling process [11,12]. 

The AR protein, as a member of the nuclear receptor (NR) family, is composed of four key regions, which are a unique 

N-terminal domain (NTD), a DNA-binding domain (DBD), a brief hinge region, as well as a C-terminal ligand-binding 

domain (LBD) [13-15]. The binding of testosterone or dihydrotestosterone (DHT) to the ligand binding pocket (LBP) 

of the AR LBD usually induces a conformational shift in AR, thereby triggering dissociation from heat shock proteins, 

dimerization, and translocation to the cell nucleus [16,17]. Subsequently, the AR dimer binds to the androgen response 

element (ARE) on DNA to regulate gene transcription, while the positive linkage between abnormal AR activity and 

PCa has been scientifically established [18,19]. 
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Endocrine therapy targeting AR has been a cornerstone in PCa treatment, yet challenges persist due to AR point 

mutations and increased constitutively active receptor expression [20,21]. Moreso, perturbations in the AR signaling 

process arising from factors such as androgen synthesis, AR amplification, mutations, or alternative splicing 

generating AR variants (AR-Vs) have been shown to contribute to resistance mechanisms against current therapies 

targeting especially the AR LBD [22,23]. Thus, ongoing investigations into the role of AR in advanced PCa have 

spurred the search for novel AR signaling inhibitors with enhanced efficacy in improving the survival of PCa patients 

[24,3], as androgen-dependent initiation and PCa progression have long prompted efforts to inhibit the characteristic 

androgen biosynthesis or AR function in this condition [25,26]. Continued research on the role of androgen receptors 

in advanced PCa has also fueled the quest for innovative AR signaling inhibitors for PCa patient outcomes 

optimization [27,28]. Additionally, androgen withdrawal through androgen deprivation therapy (ADT) or direct AR 

targeting via anti-androgens reduces AR activity, leading to cancer cell cycle arrest, apoptosis induction, as well as 

tumour volume reduction [29,30]. This is because androgen receptor antagonists or anti-androgens play a critical role 

in the suppression of AR signaling by binding to the LBD, thereby disrupting androgen-induced activation and 

observable shift towards proliferation during cancer progression and uncontrolled growth of dysregulated androgen-

induced castration-resistant prostate cancer condition [31,32]. 

Most conventional approaches focused on the inhibition of nuclear receptor activity by targeting the hormone-binding 

pocket which results in a significantly improved survival rate of prostate cancer patients [33,34]. However, they have 

been associated with diverse potency limitations due to the heterogeneity of prostate cancer conditions as well as 

diverse safety limitations of the inhibitory agents [35,36].  An alternative approach involving inhibitors binding to AR 

surfaces to facilitate the assembly of receptor-binding partners for overcoming these constraints has been suggested 

[37]. The study identified potent inhibitors binding to a regulatory surface cleft termed binding function (BF)-3, a 

known target for mutations in PCa and a promising pharmaceutical target for novel therapeutic interventions, thereby 

offering the potential to extend the survival of patients as well as prevent the shift towards poor prognosis-liable 

therapeutic resistance mechanisms. Therefore, the aim of the present study was to identify a novel effective, and 

clinically safe small molecule inhibitor of androgen receptor binding function-3 pocket (BF-3) as a therapeutic target 

for non-metastatic castration-resistant prostate cancer (CRPC). 

2. Materials and Methods 

2.1 Ligand-Based Pharmacophore Modeling of Standard Androgen Receptor 1 Inhibitors 

Structure-based pharmacophore modeling was carried out according to standard method [38]. Briefly, five randomly 

selected AR1 inhibitors with experimentally validated activity were retrieved from ChEMBL database to ensure 

diversity in chemical structures and inhibitory potencies. The dataset underwent meticulous curation involving 

removal of duplicates, standardization of chemical structures, and annotation of biological activities. This step is 

crucial for ensuring the quality and reliability of the dataset used for pharmacophore modeling. Conformational 

sampling was then performed on each inhibitor molecule in the dataset to generate multiple low-energy conformations 

using the Schrödinger Maestro. The conformations that represent energetically favourable and diverse molecular 

geometries were retained for further analysis. The pharmacophoric features shared among the AR1 inhibitors were 

identified including hydrogen bond donors, acceptors, aromatic rings, and hydrophobic groups. The conformations of 

the inhibitors were aligned based on these pharmacophoric features using alignment algorithms with a focus on 

maximizing feature overlap to ensure that the essential structural motifs contributing to AR1 inhibition are 

appropriately superimposed with minimal structural deviations. 

The pharmacophore hypotheses were then generated using the Schrödinger Phase and subjected to rigorous validation 

to assess their predictive accuracy and robustness using Fischer's randomization test. The decoy set validation was 

done to evaluate the performance of the pharmacophore model before it was applied for virtual screening of the ZINC 

database to identify potential AR1 inhibitors. The model was interpreted to understand the structural requirements for 

AR1 inhibition as a guide for the design of novel inhibitors. The results of the pharmacophore modeling including 

generated hypotheses, validation metrics, visual representations of pharmacophore features and spatial arrangements 

were documented for better understanding and reproducibility. This was then used to filter the ZINC database using 

the X: 21.22, Y: 32.04, Z: 42.08 coordinates at the ligand features of hydrophobicity, aromatic rings, hydrogen bond 

donor, hydrogen bond acceptor, as well as the exclusion sphere, through the ZINC pharmer 

(http://zincpharmer.csb.pitt.edu/pharmer.html) which yielded 32, 947 compounds. 
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2.2 Collection and Pre-processing of data for QSAR Analysis of AR1 Compounds 

A dataset comprising 400 chemical compounds known to inhibit AR1 protein was retrieved from the ChEMBL 

database to ensure dataset reliability and diversity. The dataset was then pre-processed by filtering out irrelevant 

compounds, eliminating duplicates, and standardizing chemical representations to maintain uniformity and 

consistency in the dataset in readiness for QSAR analysis. 

2.3 Descriptor Calculation and Development of Model for QSAR Analysis 

The 1D and 2D molecular descriptors of each compound were computed using the Padel software. These calculated 

essential features of the compounds help to facilitate subsequent modeling processes and offer quantitative 

representations of various physicochemical properties and structural characteristics. The QSAR models were 

developed from calculated molecular descriptors by using the standalone Drug Theoretics and Chemoinformatics 

Laboratory (DTC lab) tools. The 400 compound datasets were divided according to Kernard-Stone method into 

training set (70%) and test set (30%) for the development of genetic algorithm-multiple linear regression (GA-MLR) 

model. This was following data pre-treatment at a variance cut-off of 0.001 and inter-R2 cut-off of 0.99. One hundred 

(100) iterations were performed at the equation length of 2, and mutation probability of 0.3 at a range of 0 to 1. A total 

of 100 equations were initially generated out of which five were selected based on mean absolute error (MAE)-based 

criteria of fitness function.  

2.4 Model Evaluation for QSAR Analysis (External Validation) 

The trained model was rigorously assessed for their predictive performance and reliability through their R-squared 

(R²), Root Mean Square Error (RMSE), and Cross-Validation evaluation to gauge the accuracy and generalization 

capabilities of the model, as well as ensure that the developed model effectively captured the underlying relationships 

within the dataset. A separate test set of AR1 compounds (30%), distinct from the training dataset, was employed to 

externally evaluate the predictive performance of the model by using metrics similar to the internal validation phase 

to ensure the robustness and applicability of the model for unseen data as well as validate extra confidence in the 

predictive capability of the model. 

2.5 Standard Precision and Quantum Polarized Ligand Docking of Compounds obtained from Pharmacophore 

Screening of ZINC Database 

2.5.1 Protein Preparation 

The crystal structure of human AR1 (PDB ID: 2PIP) was retrieved from the Protein Data Bank website 

(http://www.rcsb.org). The structure was prepared using protein preparation wizard of Schrodinger Maestro version 

12.5.139 which involved removal of co-crystallized compounds, refinement of protein chain using the OPLS2005 

force field, and adjustment of pH to 7.0-7.2. Steric clashes were addressed, and hydrogen bond orders were restored 

using Epik. Also, missing side chains and loops were substituted with appropriate structures by using the Prime 

module. Additionally, water molecules with a molecular weight exceeding 5.0 and fewer than three hydrogen bonds 

with non-water entities from the ionized (Het) groups were eliminated, which were then followed by an energetic 

minimization step with a polarity charge cut off set at 0.25 [39, 40]. 

2.5.2 Ligand Preparation 

The two-dimensional structures of the extracted ZINC compounds and the standard AR1 inhibitor in this study were 

prepared by using the ligand preparation wizard of Schrodinger Maestro. This involved generating possible Epik states 

and tautomers of the ligand within a target pH range of 7.0 to 7.2, before subsequent energy minimization of the 

prepared ligands by using the MacroModel wizard under the OPLS2005 force field. 

2.5.3 Receptor Grid Generation  

The co-crystallized ligand, which also functioned as the standard inhibitor for the AR1 protein, underwent isolation 

from the receptor chain's active site. This process was carried out using the designated receptor. To ensure precision, 

atoms with Van der Waals radii of 1.0 Å and partial atomic charges of less than 0.25 Å were considered according to  
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the default criterion. Defining the active site involved creating an enclosing box around the selected residues 

neighbouring the co-crystallized ligands at coordinates (x, y, z = '80', '80', '80'). The workspace centroid then served 

as the reference point for generating a grid centered on the ligand, following the default Glide settings protocol, and 

subsequently docking all studied ligands. 

2.5.4 Glide Standard Precision Docking 

Multiple conformations of each ligand of compounds filtered from the ZINC database (32, 948 compounds) were 

subjected to docking into the receptor grid using Glide standard precision. This process accounted for factors such as 

nitrogen inversion and ring conformations. Post-docking minimization was then performed to refine the ligand poses 

further. The docking score was determined based on the input partial charges. It is important to highlight that ligands 

containing more than 500 atoms were excluded from both the docking and scoring processes. Moreover, the van der 

Waals radii of ligand atoms with partial atomic charges were scaled by 0.80 to improve accuracy relative to a partial 

charge cut off of 0.15. Epik state penalties were also integrated into the docking score calculations [41-43]. 

2.5.5 Glide Quantum Polarized Ligand Docking 

The charges for the ligands during the Glide docking process were initially determined using the standard 

semiempirical method. This involved eliminating duplicate poses if the root mean square deviation was less than 0.5 

Å and the maximum atomic displacement was less than 1.3 Å. Subsequently, quantum mechanics charges were 

computed for the ligands in their free state within the gas phase before redocking using the Glide extra precision 

feature. The binding affinity was then calculated using the Coulson charge semi-empirical method. The ligands with 

the most favorable binding poses were selected based on their Glide Score. It is noteworthy that for the receptor, the 

van der Waals scaling factor was set to 1.0, while for the ligand, it was set to 0.8 to optimize the interactions [44,45]. 

2.5.6 Molecular Mechanics-Generalized Born Surface Area Calculations 

Schrodinger Maestro Prime was employed to calculate the molecular mechanics generalized Born surface area free 

energy change (MMGBSA dG) for the docked ligands. The method utilized variable dielectric generalized-Born 

(VSGB) solvation model and the provided ligand partial charges, while the target flexible residues were constrained 

throughout these calculations [46,47]. 

2.5.7 Protein-Ligand Interaction Analysis 

The Glide merging procedure was employed to create complexes of docked ligands at their optimal binding poses 

with the protein before visualizing two-dimensional interactions between these ligands and the residues within the 

binding pocket of the target using the BIOVIA Discovery Studio suite. Additionally, Schrodinger PyMol® was 

utilized for a more detailed representation of interactions of the docked compounds with the target active pocket. 

2.6 Molecular Dynamic (MD) Simulation 

The complexes from docking analysis of the two top docked compounds and the unbound proteins were further 

subjected to full 50 ns atomistic molecular dynamics. For the docking process, previously reported standard techniques 

were employed [48-50]. The CHARMM36m force field was used to determine the parameters for ions, water 

molecules, and amino acids in proteins. Conversely, small molecules were parameterized using the CHARMM general 

force field (CGenFF) tool, which is part of CHARMM-GUI [51-53] GROMACS 2020.3 was employed for simulation 

[54]. Using the TIP3P water model with a 1 nm padding, the systems were solvated in a cubic box. NaCl ions were 

then added to the system at a concentration of 0.154 M. An MD package was used to carry out the simulation, applying 

periodic boundary conditions (PBC) in three directions. Initially, the maximum permitted force of 100 KJ.mol-1nm-1 

and the number of steps set to 100,000 minimization steps were utilised to minimize the system's potential energy and 

remove atomic collisions using the steepest descent technique. We began with an NVT ensemble, in which the volume, 

temperature, and number of atoms were held constant. Subsequently, the V-rescale approach was used to equilibrate 

the temperature to 310 K, while maintaining an atmospheric pressure of one using a Berendsen barostat [55]. Lastly, 

an NVT ensemble production run lasting 100 ns was executed. The hydrogen-bonded atoms' bond lengths were limited 

in every step by the LINear Constraint Solver (LINCS) algorithm [56].  
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The Particle Mesh Ewald (PME) technique was utilized to calculate electrostatics, with a 1.2 nm cutoff. Using a leap-

frog approach, the Newtonian equations of motion were integrated, with a time step of 1 femtosecond for the 

equilibration stages and 2 femtoseconds for the production steps. Every 0.1 ns of the production run a frame was 

recorded, summing to 1000 frames per system. A frame was recorded every 0.1 second during the production cycle, 

for a total of 1000 frames per system [57]. The Root means square deviation (RMSD) for the protein alone, the ligand 

alone, and the protein-ligand complex, root mean square fluctuation (RMSF) of Cα atoms, solvent accessible surface 

area (SASA), radius of gyration (RoG), number of hydrogen bonds, and separation of center of mass of ligand and 

protein were all computed. 

2.7 Binding Free Energy Calculation Using Molecular Mechanics Generalised Born Surface Area  

Using the Molecular Mechanics Generalised Born Surface Area (MM-GBSA) method and decomposition analysis to 

obtain the binding energies of amino acids within 0.5 nm of the ligand using the gmx MMPBSA package, the binding 

free energy of the two top docked phytochemicals from the initial docking analysis were further determined. The 

methods used were the same as those initially published [58-60]. 

2.8 Clustering of Molecular Dynamic Trajectories of Unbound Proteins 

The molecular trajectories of the complexes after 100 ns MDS were subjected to cluster analysis using Trusty 

Trajectory Clustering (TTClust) V 4.9.0 [58]. The systems were clustered automatically utilizing TTClust python 

package, which utilizes the elbow method to determine the optimal number of clusters and finally produce a 

representative frame for each cluster. A representative confirmation from each cluster was selected. The analysis of 

each cluster was based on RMSD values, concerning the starting geometry and the minimum energy conformation of 

the most populated cluster was taken as the most reliable solution. 

3. Results and Discussion 

3.1 Ligand-based Pharmacophore Modelling 

One of the significant findings of this study is the identification of common pharmacophoric features among the AR1 

inhibitors, including hydrogen bond donors, hydrogen bond acceptors, aromatic rings, and hydrophobic groups (Figure 

1). These features exhibited relatively positive HypoScores (Figure 2) and are essential for establishing favourable 

interactions with the AR1 binding pocket, to facilitate ligand-receptor recognition and binding. The spatial 

arrangement and distribution of these pharmacophoric features in the chemical structures of the inhibitors highlight 

the critical regions responsible for their inhibitory potency. Furthermore, the ligand-based pharmacophore model 

generated consensus pharmacophore hypotheses that represent the optimal arrangement of pharmacophoric features 

for AR1 inhibition (Figure 3). These hypotheses provide a structural framework for the rational design of novel AR1 

inhibitors with enhanced potency and selectivity. Thus, by aligning the inhibitors based on their pharmacophore 

features, chemical modifications, and substitutions that are likely to improve ligand binding affinity and therapeutic 

efficacy can always be prioritized in the drug development process. 

The results obtained from the comprehensive ligand-based pharmacophore modeling of five AR1 inhibitors in this 

study provide valuable insights into the structural requirements for effective AR1 inhibition. Through analysis of 

chemical features of the inhibitors and their shared pharmacophoric features, key molecular determinants essential for 

ligand binding and modulation of AR1 activity have been identified. Therefore, the insights gained from this study 

have implications for developing therapeutics targeting prostate cancer by understanding the structural requirements 

influencing the AR1 activity. This can help expedite the discovery and optimization of novel inhibitors of AR1, 

thereby ultimately leading to the development of more effective treatments for this pathological condition. Overall, 

the comprehensive ligand-based pharmacophore modeling results provide a roadmap for the rational design and 

optimization of AR1 inhibitors, which offers new opportunities for drug discovery and development in the field of 

androgen receptor modulation. Thus, by leveraging these insights, the discovery and development of therapeutic 

agents for conditions such as prostate cancer, androgenetic alopecia, and other androgen-related diseases can be 

expedited. 

 



   Na’Allah et al.                               Int. J. Biomed. Health Sci. 2025; 19(1): 61-85 

66 

 

 

  

Figure 1: Enrichment Report for the Top Best Five Pharmacophore Hypothesis 

 

 

  

Figure 2: HypoScore Values of Top Best Five Pharmacophore Hypothesis 
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(A)                                                                       (B) 

  

                 (C)                                                                       (D) 

  

   (E) 

Figure 3: Top Best Five Pharmacophore Hypothesis from the AR1 Inhibitors in the Order of (A), (B), (C), (D), 

and (E) with the Highest Inhibitory Activity. Key: (A) ADHR_1 (B) ADHR_2 (C) ADHR_5 (D) AADHR_2 (E) 

AADHR_1 Where A: Hydrogen bond acceptor; D: Hydrogen bond donor; R: Alkyl group 
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3.2 Decoy Set Validation of Pharmacophore Hypothesis 

The decoy compounds screened against the pharmacophore model showed low activity predictions (Figure 

4), thereby indicating the high specificity of the model and minimal false positives. The receiver operating 

characteristic curve analysis is a measure of the sensitivity and specificity of the pharmacophore model, 

with true positive rate (sensitivity) and false positive rate (1-specificity) being calculated at different activity 

thresholds. The area under the curve (AUC) is a measure of the model performance, with higher AUC 

values indicating better predictive power. In this study, a value of 0.8 was recorded which suggests good 

discriminatory power of the pharmacophore model between the active and inactive compounds. The 

validation tests show the reliability, robustness, and predictive accuracy of the ligand-based pharmacophore 

model for AR1 inhibitors, which supports its use in virtual screening and compound design. Thus, using a 

decoy set of compounds with similar properties but different activities helped assess the specificity of the 

model, while screening these decoy compounds revealed low activity predictions, thereby indicating high 

specificity and minimal false positives. Additionally, the receiver operating characteristic (ROC) curve 

analysis (Figure 5) confirmed the sensitivity and specificity of the model, with an AUC value of 0.8 

indicating strong discriminatory power between the active and inactive compounds. These results further 

affirm the reliability and applicability of the model in accurately predicting AR1 inhibitor activity, 

promising potential in drug discovery for relevant diseases. 

  

Figure 4: Screen Results of Decoy Set Validation of the AR 1 Inhibitors Pharmacophore Model 
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Figure 5: Receiver Operating Characteristics of Decoy Set Validation of the Model 

 

3.3 Two-Dimensional Quantitative Structure-Activity Relationship (QSAR) Model Result 

The fitness score of the Genetic Algorithm-Multiple Linear Regression (GA-MLR) model, assessed using MAE-based 

criteria, is 1.4658. This score indicates the overall quality of the model in predicting the activity of AR1 inhibitors, 

with lower values indicating better predictive performance (Figure 6). The Multiple Linear Regression (MLR) 

equation derived from the GA-MLR model is expressed as PIC50 = -69.2105 (+/-2.8837) + 2.6808 (+/-0.0438) 

nBondsS3 + 0.1137 (+/-0.0056) TopoPSA + 122.0269 (+/-4.8235) AVP-0. This equation represents the relationship 

between the predictor variables (nBondsS3, TopoPSA, AVP-0) and the response variable (PIC50), which is a measure 

of the compound's potency in inhibiting AR1 activity. The coefficients associated with each predictor variable indicate 

the magnitude and direction of their influence on the predicted PIC50 values. Furthermore, the model was trained 

using a dataset comprising 280 data points, indicating the number of compounds for which both predictor variables 

and corresponding experimental PIC50 values were available. Additionally, the model selected three features 

(nBondsS3, TopoPSA, AVP-0) as relevant descriptors for predicting AR1 inhibition activity, suggesting that these 

molecular features play a crucial role in determining the potency of AR1 inhibitors. 

The GA-MLR model provides valuable insights into the SAR of AR1 inhibitors, facilitating the identification and 

design of novel compounds with improved potency against AR1 for potential therapeutic applications. The 

comprehensive QSAR analysis conducted on a dataset comprising 400 compounds targeting the androgen receptor 1 

(AR1) extracted from the ChEMBL database holds significant promise for the discovery of novel inhibitors 

specifically tailored for the treatment of non-metastatic castration-resistant prostate cancer (CRPC). Given the critical 

role of AR1 signaling in prostate cancer progression, especially in the castration-resistant stage where standard 

androgen deprivation therapy loses efficacy, the development of potent and selective AR1 inhibitors is of paramount 

importance. The robustness of the QSAR model, as indicated by high internal validation metrics such as R^2, adjusted 

R^2, and Q^2(LOO), underscores its reliability in predicting the inhibitory potency of compounds against AR1. These 

metrics assure confidence in the model's ability to accurately discern structural features associated with AR1 

inhibition, facilitating the identification of lead compounds with enhanced activity against the target. 
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Figure 6: Best Model Genetic Algorithm-Multiple Linear Regression of Quantitative Structure-Activity 

Relationship Between the First 15 Data Points (Test and Training Datasets) of AR 1 Inhibitors  

 

External validation of the QSAR model further reinforces its utility in virtual screening efforts aimed at discovering 

novel AR1 inhibitors for CRPC therapy. The high Q^2(F1) test and Q^2(F2) test values, along with the coefficient of 

determination and mean absolute error (MAE) for the test set, signify the model's consistency and accuracy in 

predicting the activity of unseen compounds. This reliability is crucial for prioritizing compounds with the greatest 

likelihood of efficacy in preclinical and clinical settings. Additionally, the MAE-based prediction quality of the model, 

deemed "GOOD" for both internal and external validation, further assures its suitability for identifying potential drug 

candidates with favourable pharmacological profiles. The implications of the QSAR findings extend beyond predictive 

modeling, which offers valuable insights into the structural determinants of AR1 inhibition. The QSAR model, by 

elucidating the key molecular features associated with enhanced inhibitory activity, helps to facilitate rational drug 

design strategies that are aimed at optimizing the potency, selectivity, and pharmacokinetic properties of AR1 

inhibitors. This knowledge-driven approach is particularly relevant in the context of CRPC therapy, where the 

development of novel therapeutics capable of overcoming resistance mechanisms and improving patient outcomes 

remains a significant unmet need. Therefore, the comprehensive QSAR analysis of AR1 inhibitors represents a critical 

step forward in the quest for innovative therapies for CRPC, which can expedite the discovery and optimization of 

lead compounds with the potential to disrupt AR1 signaling pathways and impede prostate cancer progression by 

leveraging computational modeling techniques to interrogate large chemical datasets. Ultimately, these efforts hold 

promise for advancing precision medicine approaches tailored to the unique molecular characteristics of individual 

patients, thereby improving treatment outcomes and quality of life for those affected by CRPC. 

3.4 The QSAR Validation Results 

The high coefficient of determination (R²) of 0.9467 and adjusted R² of 0.9461 indicate strong correlations between 

chemical features and AR1 inhibition, which explains approximately 94.67% of the variance in the dataset. The low 

Standard Error of Estimation (SEE) and Mean Absolute Error (MAE) reflect minimal prediction error, while the 

Q²(LOO) value of 0.9451 demonstrates its robust predictive performance on unseen data.  
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Furthermore, the external validation metrics confirm the model's generalizability and reliability when applied to 

separate test compounds. High values of Q² (F1) Test and Q² (F2) Test, along with a Concordance Correlation 

Coefficient (CCC) Test value of 0.9715, indicate strong predictive performance on the test set. The stability of the 

model across different subsets of the training data is supported by the scaled average Rm²(LOO) and scaled delta 

Rm²(LOO) metrics. The validation results confirm the accuracy, precision, and robustness of the QSAR model in 

predicting AR1 inhibitor activity. This suggests its potential utility in guiding the discovery and development of novel 

compounds for treating non-metastatic castration-resistant prostate cancer by targeting the AR1 protein. 

Internal Validation Metrics: 

************************* 

R^2 = 0.9467 

R^2(Adjusted) = 0.9461 

Standard Error of Estimation (SEE) = 2.5959 

Q^2(LOO) = 0.9451 

SDEP(LOO) = 2.615 

Scaled average Rm^2(LOO) = 0.9214 

Scaled delta Rm^2 (LOO) = 0.0461 

Mean Absolute Error (MAE, Model-Predicted) = 1.9209 

Mean Absolute Error (MAE, LOO) = 1.9489 

Prediction Quality (MAE-based criteria) = GOOD 

------------------------------------------------------------------------------------------------  

External Validation Metrics Using a Test Set: 

*************************************** 

Number of Test set datapoints: 120 

Q^2 (F1) Test = 0.9461 

Q^2 (F2) Test = 0.9459 

Scaled average Rm^2(Test) = 0.8809 

Scaled delta Rm^2 (Test) = 0.0486 

CCC (Test) = 0.9715 

Mean Absolute Error (MAE, Test) = 2.0086 

Prediction Quality (MAE-based criteria, Test) = GOOD 

 

3.5 Standard Precision Docking Results of Top 25 Hits of Extracted Compounds from Zinc Database 

Based on Glide standard precision docking, the top 25 compounds exhibited relatively higher Glide GScore and 

MMGBSA dG Bind values for AR1 protein than the standard in this study, with ZINC78824417 showing the highest 

binding values (Figure 7). The higher binding values suggest stronger interactions between these compounds and the 

AR1 protein, thus indicating their potential effectiveness as AR1 inhibitors. The Glide GScore is a scoring system that 

evaluates the binding affinity of a ligand to its target protein in molecular docking simulations. A higher GScore often 

indicates better binding interaction, implying greater therapeutic potential. Similarly, the MMGBSA dG Bind value, 

determined from molecular mechanics/generalized Born surface area calculations, sheds light on the binding free 

energy of the ligand-protein complex, with larger MMGBSA dG Bind values indicating stronger ligand-protein 

interaction. Thus, the fact that these top compounds exhibited superior binding values compared to the standard 

compound is promising, as it suggests their potential as potent AR1 inhibitors. The relatively higher binding affinity 

implies that these compounds may have a greater ability to disrupt AR1 activity, which is often desirable in the context 

of diseases such as prostate cancer where AR1 plays a significant role. 

3.6 Quantum Polarized Ligand Docking Results of Top 25 Hits of Extracted Compounds from Zinc Database 

The top 25 compounds exhibited relatively higher XP GScore and MMGBSA dG Bind values for AR1 protein than 

the standard in this study, with ZINC92180466 showing the highest binding values (Figure 8). These compounds 

demonstrated superior binding affinity to the target protein, suggesting their potential as strong inhibitors or 

modulators of AR activity.  
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Figure 7: Comparative Glide GScore and MMGBSA dG Bind Values of Top 25 Hits of Extracted Compounds 

from Zinc Database 

 

  

Figure 8: Comparative XP GScore and MMGBSA dG Bind Values of Top 25 Hits of Extracted Compounds 

from Zinc Database 
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Among these compounds, ZINC92180466 stood out with the highest binding values, which indicates that it is a 

particularly promising candidate for further investigation and development. The XP GScore, derived from Glide 

quantum polarized docking, is a scoring function used to evaluate the binding affinity between a ligand and a protein 

target. A higher XP GScore value indicates a stronger interaction between the ligand and the receptor, suggesting 

greater potential for biological activity. Similarly, the MMGBSA dG Bind value, which is calculated by using 

molecular mechanics generalized Born surface area free energy change, provides insights into the binding energy of 

the ligand-receptor complex, with compounds exhibiting higher MMGBSA dG Bind values having more favorable 

binding interactions potential with the protein target. 

The significance of these findings lies in identifying compounds with enhanced binding properties compared to the 

standard compound used in the study. Such compounds hold promises for developing novel therapeutics or chemical 

probes targeting the AR pathway, which plays a crucial role in various physiological processes and disease states, 

including prostate cancer. Moreover, the utilization of Glide quantum polarized docking underscores the rigor and 

reliability of the computational approach employed in this study, by employing advanced molecular docking 

techniques that can effectively screen large compound libraries and prioritize candidates with the highest likelihood 

of binding to the target protein with high affinity. Overall, the identification of top-performing compounds with higher 

binding characteristics for the AR1 protein, particularly ZINC92180466, highlights the potential of computational 

drug discovery approaches in identifying lead compounds for further experimental validation and development into 

potential therapeutic agents. These findings contribute to the ongoing efforts aimed at discovering novel treatments 

for non-metastatic CRPC. 

 

3.7 Induced Fit Docking Results of Top 25 Hits of Extracted Compounds from Zinc Database 

The top 25 compounds also demonstrated notably higher induced fit docking (IFD) scores in this study when compared 

to the standard compound following IFD simulations (Figure 9). These findings indicate that these compounds have 

a stronger binding affinity towards the target protein, which suggests their potential as effective inhibitors or 

modulators of the biological activity associated with AR1 protein. IFD simulations enhance the flexibility of both 

ligands and protein receptors thereby providing a more accurate representation of ligand-receptor interactions in a 

dynamic environment. The higher IFD score values obtained from these simulations suggest that the top 25 compounds 

exhibited more optimized binding interactions with the flexible target protein following the induced fit docking 

process, which further confirms the efficacy potential of these compounds on the AR1 protein. Moreso, 

ZINC92180466, among the top-performing compounds, stood out with the highest binding values, which indicates its 

strong potential as a lead candidate for further investigation. The superior binding characteristics of ZINC92180466 

following docking simulation, suggest that it possesses desirable pharmacological properties, which render it a 

promising candidate for drug development efforts targeting non-metastatic CRPC. Furthermore, the use of IFD 

simulations underscores the sophistication of the computational methods employed in this study. By considering the 

flexibility of both ligands and the protein receptors, IFD provides a more realistic representation of interactions 

between the compounds and proteins, thereby enhancing the reliability of the virtual screening process. 

 

 

3.8 Binding Interaction Between Androgen Receptor 1 Protein and the Ligands 

The reference (standard) compound binds to Val 730 and Asp 731 of the AR1 protein through the conventional 

hydrogen bond at average bond distances of 5.34 Å and 4.24 Å respectively, as well as Lys 720, Val 716, and Met 

734 of the protein through the hydrophobic alkyl and Pi-alkyl bond at the distances of 5.12 Å, 3.61 Å, and 4.84 Å 

respectively (Figure 10). This compound is known to modulate the activity of the protein by binding to the binding 

function 3 (BF3) region of the protein active pocket. Like the standard compound, ZINC92180466 binds to Val 716, 

Lys 720, and Met 734 of the AR 1 protein through the hydrophobic alkyl and an attractive charge at bond distances 

of 5.07 Å, 4.62 Å, and 5.28 Å. This is in addition to binding relatively tighter to Gln 738 of the protein through the 

Pi-Donor hydrogen bond at 2.59 Å, Glu 897 through the conventional hydrogen bond at the distance of 1.88 Å, as 

well as Met 894 at the bond distance of 5.21 Å (Figure 11). This may have been responsible for the observed relatively 

higher induced fit docking score of the ZINC92180466 compound than the standard. 
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This comparison highlights the differences in binding characteristics and effects on AR1 protein activity between the 

reference compound and the ZINC92180466 compound. The targeted amino acids and the strength of binding 

interactions contribute to the observed differences in their induced fit docking scores, which indicates potential 

variations in their efficacy as AR1 protein activity modulators. 

 

  

Figure 9: Comparative IFD Score Values of Top 25 Hits of Extracted Compounds from Zinc Database 

 

  

Figure 10: Comparative pocket view and 2D structure of ligand-protein interactions between the standard 

compound and AR1 protein 
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Figure 11: Comparative pocket view and 2D structure of ligand-protein interactions between ZINC92180466 

and AR1 Protein 

 
3.9 Molecular Dynamics Simulation of Complexes Between ZINC92180466 and the Protein Co-Crystal 

Table 1 presents the averages and standard deviations of all the studied parameters (RMSD, RMSF, RoG, SASA, and 

number of H-bonds) while Figures 12-16 show the spectral plots obtained for co-crystal_complex and 

ZINC92180466_complex during 100 ns molecular dynamics simulation (MDS). RMSD plots are used to examine the 

protein stability of the system since they display the degree of each frame's divergence from the original structure 

[61]. Following an approximate 10-ns equilibration phase for the RMSD plots for both complexes, the simulation 

proceeded with little fluctuation that was in the acceptable range for the course of the simulation (Figure 12). The 

ZINC92180466_complex presented the maximum fluctuation around 45 ns after which the simulation continued with 

minimal fluctuation until the end. Both the spectral plots and computed mean RMSD show that the binding of the 

docked compounds did not distort the structural integrity of the protein targets. The RMSF plots demonstrate the 

flexibility of various enzyme regions. Both complexes showed little fluctuation for the duration of the simulation in 

the RMSF charts (Figure 13). Both complexes also presented similar mean RMSF values (Table 1). The internal 

flexibility of the protein was not distorted by the binding of the compounds [62]. 

The examination of the RoG plots allowed for additional measurement of the bound systems’ compactness. Typically, 

the solvent accessible surface area (SASA) plots show the quantity of solvent accessible by the protein surface. Both 

RoG and SASA determine the integrity of the folded protein especially during ligand binding. Moreover, the RoG 

plots of the system were equilibrated before 10 ns and continued throughout the simulation (Figure 14). The two 

complexes presented similar mean SASA values, and the spectral plots showed minimal fluctuation (Figure 15). 

Findings from this study showed that the integrity of the folded protein was not distorted by the binding of the ligands, 

hence the compactness of the protein structures was not compromised [63,64]. Throughout the simulation, there were 

not many changes in the number of H-bonds. The complexes showed a close mean number of hydrogen bonds (Figure 

16). 

 

Table 1: Parameters Analyzed from MDS Trajectories of Docked Compounds Complexed with Target Protein 

 

 RMSD (Å) RMSF (Å) RoG (Å) SASA (Å) H-Bonds (Å) 

Co-crystal_Complex 1.63 ± 0.25 0.73 ± 0.33 18.48 ± 0.06 13102.9 ± 210.71 62.77 ± 6.49 

ZINC92180466_Complex 1.86 ± 0.25 0.79 ± 0.36 18.54 ± 0.06 13263.0 ± 193.72 60.55 ± 6.45 

Values are expressed as Mean ± Standard Deviation 
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Figure 12: RMSD plots of MDS of docked compound complexed to the target protein 

 

   

Figure 13: RMSF plots of MDS of docked compound complexed to the target protein 
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Figure 14: RoG plots of MDS of docked compound complexed to the target protein 

  

Figure 15: SASA plots of MDS of docked compound complexed to the target protein 
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Figure 16: Plots showing changes in the number of H-bonds during MDS of docked compound complexed to 

the target protein 

 

3.10 Molecular Mechanics Generalized Born Surface Area (MMGBSA) Analysis 

From the computed binding free energy, ZINC92180466 demonstrated lower binding free energy (-17.21 ± 3.96) 

when compared to co-crystal compound (-14.12 ± 8.73). The result from the binding free energy computation in a 

dynamic mode corroborated the static docking analysis. Table 2 lists the several components that add up to the overall 

binding free energy. Simulation-based quantitative estimates of the free binding affinity energy of ligands to proteins 

have been demonstrated to be more precise and dependable in a dynamic context [65]. Using decomposition analysis, 

the contributing amino acids that make up the overall binding energy were determined. It was observed that the 

interacting residues during the static docking were majorly involved in the contribution to the total binding free energy. 

For the co-crystal_complex, the amino acid residue that contributed more than -1 kcal/mol include Val716, Met734, 

and Met894 (Figure 17), while those involved in the ZINC92180466_complex include Lys720, Arg726, Met734, and 

Met894 that are known to be present in the binding function 3 (BF3) region of the AR1 protein active pocket (Figure 

18). 

Table 2: Different components energy involved in the binding free energy of docked to target proteins 

 

SYSTEM ΔVDWAALS ΔEEL  ΔEGB ΔESURF ΔGGAS ΔGSOLV ΔTOTAL 

COCRYSTAL_COMPLEX -14.21 ± 8.70 -153.8 ± 65.7 156.6 ± 62.0 -2.78 ± 1.36 -168.0 ± 68.5 153.9 ± 61.0 -14.12 ± 8.73 

ZINC92180466_COMPLEX -24.45 ± 4.22 -3.15 ± 7.17 13.80 ± 7.21 -3.41 ± 0.60 -27.60 ± 8.84 10.39 ± 6.93 -17.21 ± 3.96 

Values are expressed as Mean ± Standard Deviation 
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Figure 17: MMPBSA free energy decomposition of residues within 10Å of target protein Complexed with Co-

crystal ligand 

 

  

  

Figure 18: MMPBSA free energy decomposition of residues within 10Å of target protein Complexed with 

ZINC92180466 
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4.0 Conclusion 

The results of the comprehensive ligand-based pharmacophore modeling of five androgen receptor 1 (AR1) inhibitors 

provide valuable insights into the structural requirements for effective AR1 inhibition and the identification of 

common pharmacophoric features, including hydrogen bond donors, acceptors, aromatic rings, and hydrophobic 

groups, underscores the critical regions being responsible for their inhibitory potency. 

The generated pharmacophore model yielded consensus hypotheses with the best model (based on the highest 

hyposcore), representing the optimal arrangement of pharmacophoric features for AR1 inhibition. This hypothesis 

offers a structural framework for the rational design of novel AR1 inhibitors to guide chemical modifications for the 

enhancement of therapeutic potential of the compound against AR1 protein, with profound implications for the 

development of optimized non-metastatic castration-resistant prostate cancer therapeutics, while the analysis of 

induced fit docking and  molecular dynamics simulations of binding of purchasable compounds extracted from the 

ZINC database based on this model reveals ZINC92180466 as the compound with the highest resultant binding free 

energy and stability metrics without significantly distorting the structural integrity of AR1 protein, thus suggesting 

the suitability of this compound for further investigation and development. Furthermore, its decomposition analysis 

identified key amino acid residues contributing to the overall binding energy, thereby providing insights into the 

molecular interactions driving this ligand-receptor binding. 

Therefore, in conclusion, the continuous exploration of AR-targeted therapies, especially those focusing on 

non-LBD sites like BF3, offers promising avenues in combating castration-resistant prostate cancer. With the AR1 

protein playing a pivotal role in disease progression and resistance mechanisms of non-metastatic castration-resistant 

prostate cancer, novel small molecule ARBF-3 binder such as ZINC92180466 identified in this study through 

advanced computational techniques hold potential for enhanced therapeutic strategies against the disease to ultimately 

improve patient survival and quality of life. 
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